166 research outputs found

    Powering galactic super-winds with small-scale AGN winds

    Full text link
    We present a new implementation for active galactic nucleus (AGN) feedback through small-scale, ultra-fast winds in the moving-mesh hydrodynamic code AREPO. The wind is injected by prescribing mass, momentum and energy fluxes across a spherical boundary centred on a supermassive black hole according to available constraints for accretion disc winds. After sweeping-up a mass equal to their own, small-scale winds thermalise, powering energy-driven outflows with dynamics, structure and cooling properties in excellent agreement with those of analytic wind solutions. Momentum-driven solutions do not easily occur, because the Compton cooling radius is usually much smaller than the free-expansion radius of the small-scale winds. Through various convergence tests, we demonstrate that our implementation yields wind solutions which are well converged down to the typical resolution achieved in cosmological simulations. We test our model in hydrodynamic simulations of isolated Milky Way - mass galaxies. Above a critical AGN luminosity, initially spherical, small-scale winds power bipolar, energy-driven super-winds that break out of the galactic nucleus, flowing at speeds >1000 km s−1> 1000 \rm \, km \, s^{-1} out to ∼10 kpc\sim 10 \, \rm kpc. These energy-driven outflows result in moderate, but long-term, reduction in star formation, which becomes more pronounced for higher AGN luminosities and faster small-scale winds. Suppression of star formation proceeds through a rapid mode that involves the removal of the highest-density, nuclear gas and through a slower mode that effectively halts halo gas accretion. Our new implementation makes it possible to model AGN-driven winds in a physically meaningful and validated way in simulations of galaxy evolution, the interstellar medium and black hole accretion flows.Comment: 30 pages, 17 figures, MNRAS (Accepted

    A finite volume method for two-moment cosmic-ray hydrodynamics on a moving mesh

    Full text link
    We present a new numerical algorithm to solve the recently derived equations of two-moment cosmic ray hydrodynamics (CRHD). The algorithm is implemented as a module in the moving mesh Arepo code. Therein, the anisotropic transport of cosmic rays (CRs) along magnetic field lines is discretised using a path-conservative finite volume method on the unstructured time-dependent Voronoi mesh of Arepo. The interaction of CRs and gyroresonant Alfv\'en waves is described by short-timescale source terms in the CRHD equations. We employ a custom-made semi-implicit adaptive time stepping source term integrator to accurately integrate this interaction on the small light-crossing time of the anisotropic transport step. Both the transport and the source term integration step are separated from the evolution of the magneto-hydrodynamical equations using an operator split approach. The new algorithm is tested with a variety of test problems, including shock tubes, a perpendicular magnetised discontinuity, the hydrodynamic response to a CR overpressure, CR acceleration of a warm cloud, and a CR blast wave, which demonstrate that the coupling between CR and magneto-hydrodynamics is robust and accurate. We demonstrate the numerical convergence of the presented scheme using new linear and non-linear analytic solutions.Comment: 24 pages, 15 figures, submitted to MNRAS, comments are welcome

    Non-ideal magnetohydrodynamics on a moving mesh

    Full text link
    In certain astrophysical systems the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfv\'en waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.Comment: 18 pages, 11 figures, accepted for publication in MNRAS. Revisions to match the accepted versio

    AREPO-RT: Radiation hydrodynamics on a moving mesh

    Full text link
    We introduce AREPO-RT, a novel radiation hydrodynamic (RHD) solver for the unstructured moving-mesh code AREPO. Our method solves the moment-based radiative transfer equations using the M1 closure relation. We achieve second order convergence by using a slope limited linear spatial extrapolation and a first order time prediction step to obtain the values of the primitive variables on both sides of the cell interface. A Harten-Lax-Van Leer flux function, suitably modified for moving meshes, is then used to solve the Riemann problem at the interface. The implementation is fully conservative and compatible with the individual timestepping scheme of AREPO. It incorporates atomic Hydrogen (H) and Helium (He) thermochemistry, which is used to couple the ultra-violet (UV) radiation field to the gas. Additionally, infrared radiation is coupled to the gas under the assumption of local thermodynamic equilibrium between the gas and the dust. We successfully apply our code to a large number of test problems, including applications such as the expansion of HII{\rm H_{II}} regions, radiation pressure driven outflows and the levitation of optically thick layer of gas by trapped IR radiation. The new implementation is suitable for studying various important astrophysical phenomena, such as the effect of radiative feedback in driving galactic scale outflows, radiation driven dusty winds in high redshift quasars, or simulating the reionisation history of the Universe in a self consistent manner.Comment: v2, accepted for publication in MNRAS, changed to a Strang split scheme to achieve second order convergenc

    LYRA I: Simulating the multi-phase ISM of a dwarf galaxy with variable energy supernovae from individual stars

    Full text link
    We introduce the LYRA project, a new high resolution galaxy formation model built within the framework of the cosmological hydro-dynamical moving mesh code AREPO. The model resolves the multi-phase interstellar medium down to 10 K. It forms individual stars sampled from the initial mass function (IMF), and tracks their lifetimes and death pathways individually. Single supernova (SN) blast waves with variable energy are followed within the hydrodynamic calculation to interact with the surrounding interstellar medium (ISM). In this paper, we present the methods and apply the model to a 1010M⊙10^{10} M_{\odot} isolated halo. We demonstrate that the majority of supernovae are Sedov-resolved at our fiducial gas mass resolution of 4M⊙4 M_{\odot}. We show that our SN feedback prescription self-consistently produces a hot phase within the ISM that drives significant outflows, reduces the gas density and suppresses star formation. Clustered SN play a major role in enhancing the effectiveness of feedback, because the majority of explosions occur in low density material. Accounting for variable SN energy allows the feedback to respond directly to stellar evolution. We show that the ISM is sensitive to the spatially distributed energy deposition. It strongly affects the outflow behaviour, reducing the mass loading by a factor of 2-3, thus allowing the galaxy to retain a higher fraction of mass and metals. LYRA makes it possible to use a comprehensive multi-physics ISM model directly in cosmological (zoom) simulations of dwarf and higher mass galaxies.Comment: 20 pages, 19 figures, published in MNRA
    • …
    corecore